Numerical simulation of the full non-linear behaviour of Wave Energy Converters

Alejandro J. C. Crespo, M. Brito, J.M. Domínguez, R.B. Canelas, M. Hall, C. Altomare, M. Wu, V. Stratigaki, P. Troch, L. Cappietti, R.M. Ferreira, M. Gómez-Gesteira

Universida_{de}Vigo

OUTLINE

Objective: Numerical modelling of WECs

SPH modelling: DualSPHysics software

- Wave generation, propagation and absorption
- Wave-structure interaction
- Coupling with MoorDyn
- Coupling with Project Chrono

Application to different WECs

- Oscillating Water Column (OWC)
- Oscillating Wave Surge Converter (OWSC)
- Point absorber
- Others (WaveStar, M4)

Conclusions & Future work

OUTLINE

Objective: Numerical modelling of WECs

SPH modelling: DualSPHysics software

- Wave generation, propagation and absorption
- Wave-structure interaction
- Coupling with MoorDyn
- Coupling with Project Chrono

Application to different WECs

- Oscillating Water Column (OWC)
- Oscillating Wave Surge Converter (OWSC)
- Point absorber
- Others (WaveStar, M4)

Conclusions & Future work

MAIN OBJECTIVE:

To develop a numerical tool that helps in the design and testing of WECs (*not only the efficiency but also the survivability*)

CHALLENGES:

NWT (Numerical Wave Tank):

How to mimic wave flumes and basins and real sea state?

FSI (Wave-structure interaction):

How to solve large deformations of fixed and floating devices under extreme wave conditions?

PTO (POWER TAKE-OFF):

How to solve numerically the mechanical constraints?

OUTLINE

Objective: Numerical modelling of WECs

SPH modelling: DualSPHysics software

- Wave generation, propagation and absorption
- Wave-structure interaction
- Coupling with MoorDyn
- Coupling with Project Chrono

Application to different WECs

- Oscillating Water Column (OWC)
- Oscillating Wave Surge Converter (OWSC)
- Point absorber
- Others (WaveStar, M4)

Conclusions & Future work

Navier-Stokes equations

Mass
conservation
$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = -\rho \nabla \cdot \mathbf{v}$$
 $\left\langle \frac{\mathrm{d}\rho}{\mathrm{d}t} \right\rangle = \sum_{j} m_{j} \left(\mathbf{v}_{i} - \mathbf{v}_{j} \right) \cdot \nabla_{i} W_{ij}$

Momentum conservation $\frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t} = -\frac{1}{\rho} \nabla p + \mathbf{F}$ $\left\langle \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t} \right\rangle = \sum_{j} m_{j} \left(\frac{p_{j}}{\rho_{j}^{2}} + \frac{p_{i}}{\rho_{i}^{2}} \right) \nabla_{i} W_{ij}$

> Continuous notation (INTEGRALS)

Discrete notation (SUMMATIONS)

State equation for barotropic fluids

 $P = F(\rho)$

nearly incompressible fluids (small density variations)!

Navier-Stokes equations

ADVANTAGES comparing with mesh-based CFD codes:

- ✓ Efficient treatment of the large deformation of free surfaces since there is no mesh distortion and no need for a special treatment of the surface
- ✓ Handling **complex geometries** and **high deformation**
- ✓ Distinguishing **between phases** due to holding material properties at each particle
- ✓ Natural incorporation of coefficient discontinuities and **singular forces**

DISADVANTAGES comparing with mesh-based CFD codes:

- ✓ There is still no unanimity to choose the best solid **boundary conditions**.
- ✓ **Turbulence treatment** is still an open field and more research is needed.
- ✓ **Time computation is expensive** comparing with other methods

OPEN-SOURCE CODE

AVAILABLE FOR FREE

COLLABORATIVE PROJECT

LGPL LICENSE

HIGHLY PARALLELISED

PRE- & POST-PROCESSING

APPLIED TO REAL PROBLEMS

OPEN PROJECT

DualSPHysics

FAQ References Downloads Validation Animations SPHysics GPU Computing Features WIKI GUI Visualization Developers Contact Forum News

DualSPHysics is based on the Smoothed Particle Hydrodynamics model named

DualSPHysics is based on the Smoothed Particle Hydrodynamics model named SPHysics (www.sphysics.org).

The code is developed to study free-surface flow phenomena where Eulerian methods can be difficult to apply, such as waves or impact of dam-breaks on off-shore structures. **DualSPHysics** is a set of C++, CUDA and Java codes designed to deal with real-life engineering problems.

Contact E-Mail: dualsphysics@gmail.com

Youtube Channel: www.youtube.com/user/DualSPHysics

Twitter Account: @DualSPHysics

www.dual.sphysics.org

OPEN-SOURCE CODE

AVAILABLE FOR FREE

COLLABORATIVE PROJECT

LGPL LICENSE

HIGHLY PARALLELISED

PRE- & POST-PROCESSING

APPLIED TO REAL PROBLEMS

OPEN PROJECT

Industrial interest:

NASA JSC, BAE Systems, Volkswagen AG, McLaren Racing Ltd, Forum NOKIA, NVIDIA, AECOM, HDR Engineering, ABPmer, DLR, CFD-NUMERICS, BMT Group, Oak Ridge National Laboratory, Rainpower Norway, Shell Company, ABB, FEMTO Engineering ...

Wave energy companies:

American Wave Machines, Carnegie Clean Energy Ltd, Maine Marine Composites, National Renewable Energy Laboratory in U.S.A., Atria Power Corporation Ltd., Global Hydro Energy, WavePower

OPEN-SOURCE CODE

AVAILABLE FOR FREE

COLLABORATIVE PROJECT

LGPL LICENSE

HIGHLY PARALLELISED

PRE- & POST-PROCESSING

APPLIED TO REAL PROBLEMS

OPEN PROJECT

DEVELOPERS:

Universidade de Vigo, Spain The University of Manchester, UK Instituto Superior Tecnico, Lisbon, Portugal Università degli studi di Parma, Italy Flanders Hydraulics Research, Belgium New Jersey Institute of Technology, USA

COLLABORATORS:

Universidad Politécnica de Madrid, Spain TECNALIA. Inspiring Business, Spain Universitat Politècnica de Catalunya Imperial College London, UK Universiteit Gent, Belgium University of Salerno, Italy New Jersey Institute of Technology, USA Universidad de Guanajuato, Mexico

OPEN-SOURCE CODE

AVAILABLE FOR FREE

COLLABORATIVE PROJECT

LGPL LICENSE

HIGHLY PARALLELISED

PRE- & POST-PROCESSING

APPLIED TO REAL PROBLEMS

OPEN PROJECT

LGPL (Lesser General Public License) can be used in **commercial** applications

Software can be incorporated into both:

- free software and
- proprietary software

OPEN-SOURCE CODE

AVAILABLE FOR FREE

COLLABORATIVE PROJECT

LGPL LICENSE

HIGHLY PARALLELISED

PRE- & POST-PROCESSING

APPLIED TO REAL PROBLEMS

OPEN PROJECT

OPEN-SOURCE CODE

AVAILABLE FOR FREE

COLLABORATIVE PROJECT

LGPL LICENSE

HIGHLY PARALLELISED

PRE- & POST-PROCESSING

APPLIED TO REAL PROBLEMS

OPEN PROJECT

Graphical User Interface FX FreeCAD

Open Source parametric 3D CAD modele

Advanced visualisation *islander*

OPEN-SOURCE CODE

AVAILABLE FOR FREE

COLLABORATIVE PROJECT

LGPL LICENSE

HIGHLY PARALLELISED

PRE- & POST-PROCESSING

APPLIED TO REAL PROBLEMS

OPEN PROJECT

OPEN-SOURCE CODE

AVAILABLE FOR FREE

COLLABORATIVE PROJECT

LGPL LICENSE

HIGHLY PARALLELISED

PRE- & POST-PROCESSING

APPLIED TO REAL PROBLEMS

OPEN PROJECT

OPEN-SOURCE CODE

AVAILABLE FOR FREE

COLLABORATIVE PROJECT

LGPL LICENSE

HIGHLY PARALLELISED

PRE- & POST-PROCESSING

APPLIED TO REAL PROBLEMS

OPEN PROJECT

DualSPHysics Package http://dual.sphysics.org

DualSPHysics Code on GitHub

OPEN-SOURCE CODE

AVAILABLE FOR FREE

COLLABORATIVE PROJECT

LGPL LICENSE

HIGHLY PARALLELISED

PRE- & POST-PROCESSING

APPLIED TO REAL PROBLEMS

OPEN PROJECT

https://	github.com/DualSPH	ysics/DualSPHysics
	6	

→ C ☆ 🔒 GitHub	, Inc. [US] http	s://github.com/Dual	SPHysics/DualSPHysi	cs	Q	☆
Search or jump to	7 Pul	l requests Issues Marketpla	ice Explore		* +	- 1
DualSPHysics / DualSPHysics	cs		O Unwatch - 14	🖈 Unsta	r 23 Fo	rk
↔ Code ① Issues 1 11 Pu	ill requests 1 📃 Pro	ojects 🛛 🖽 Wiki 📊 Ir	nsights			
C++/CUDA/OpenMP based Smo	othed Particle Hydrod	lynamics (SPH) Solver				
114 commits	₽ 2 branches	🛇 10 releases	22 5 contributors		ಕ್ಷೆ LGPL-2.1	
Branch: master - New pull request			Create new file Upload files	Find file	Clone or dov	mice
Rodland Update README.md				Latest commi	it 1ebbd43 12 d	lays i
i bin	Updates Visual Stu	udio project and makfiles for Cl	JDA 9.2.		12 d	ays a
🖬 doc	Updates Visual Stu	udio project and makfiles for Cl	JDA 9.2.		12 d	ays ;
examples	Merge branch 'de	velop'			15 d	ays ;
in src	Merge branch 'de	velop'			12 d	ays ;
.gitignore	Minor changes in	help information (blocksize by	default is fixed).		2 mon	ths a
CONTRIBUTING.md	Added repository	documentation			6 mon	ths a
Files_DualSPHysics_v4.2.pdf	Updates examples	and other minor changes.			a moi	nth a
LICENSE	Created LICENSE				6 mon	ths a
README.md	Update README.r	nd			12 d	ays a
	cp Dt	u JalSPHys	gpu ics			
DualSPH	vsics is based on the	Smoothed Particle Hydrod	lynamics model named SP	Hysics.		
The code is developed t waves or impact of dam	o study free-surface -breaks on off-shore deal v	flow phenomena where Eu structures. DualSPHysics is with real-life engineering p	erian methods can be diff a set of C++, CUDA and J roblems.	icult to app ava codes o	ply, such as designed to	
Instructions	or regular	users				
If you only want a copy of package from the official y	DualSPHysics to creat	te and run cases in your sys	tem, you probably want the ackages of different version	full DualSi is for differ	PHysics ent	
Operating Systems.	rebsiter mere you will	r lind documentation and p				
Operating Systems. It is possible that you wan check the Building the pro	the latest version in i	this repository that is not ye n executable.	et uploaded in the official w	eb page. In	this case	
Operating Systems. It is possible that you wan check the Building the pro Have in mind that DualSPI included the main package	the latest version in t ject section to build a lysics needs a case all on the DualSPHysics	this repository that is not ye in executable. ready created to execute th s webpage.	e SPH solver, so you need t	eb page. In o use GenC	n this case Case, which i	s

Wave propagation and absorption

Altomare et al., 2017

Regular waves with Passive Absorption (SPONGE)

Regular waves with Active Absorption (AWAS)

INCIDENT WAVE + REFLECTED WAVE

Wave propagation and absorption

Altomare et al., 2017

Regular waves: *H*=0.1m, *T*=1.3s

Interaction between waves and fixed structures: RUN-UP

DualSPHysics was validated using **TIME SERIES of Run-up!!!**

Experiments performed in the CIEMito wave flume at LIM-UPC (Barcelona) Web: http://ciemlab.upc.edu/

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Interaction between waves and fixed structures: RUN-UP AMOUR BLOCK DIKE

Interaction between waves and fixed structures: RUN-UP AMOUR BLOCK DIKE

Initial particle distance: dp=0.008 m with h/dp=2.6 Wendland kernel with interaction distance of 2h Total number of particles with depth=0.25 leads to 1,133,955 Physical time to be simulated: 20 seconds Computational time using GeForce RTX 2080 Ti GPU card was 15.4h (160,130 steps) Piston motion following external file (time and x-position) Exact position of the blocks in STL file

Interaction between waves and fixed structures: RUN-UP

CIEMito experiment: Run-up over breakwater

Zhang et al., 2017

Zhang et al., 2017

Wave-structure interaction

Interaction between waves and fixed structures: RUN-UP

AMOUR BLOCK DIKE Case#7: H=0.08 m, T=0.87 s, d=0.25 m

Time series of the experimental and numerical surface elevation

Zhang et al., 2017

Interaction between waves and fixed structures: RUN-UPAMOUR BLOCK DIKECase#7: H=0.08 m, T=0.87 s, d=0.25 m

Time series of the experimental and numerical RUNUP

Crespo et al., 2018

Wave-structure interaction II

Surge [m]

Interaction between waves and floating structures

Floating BOX subjected to REGULAR WAVES

Crespo et al., 2018

Wave-structure interaction II

Interaction between waves and floating structures

Coupling with MoorDyn

MoorDyn is an open-source dynamic mooring line model that uses a lumped-mass formulation for modelling axial elasticity, hydrodynamics, and bottom contact.

http://www.matt-hall.ca/moordyn/

Coupling with MoorDyn

MoorDyn is an open-source dynamic mooring line model that uses a lumped-mass formulation for modelling axial elasticity, hydrodynamics, and bottom contact.

http://www.matt-hall.ca/moordyn/
Coupling with MoorDyn

VALIDATION: EXPERIMENTS IN GHENT UNIVERSITY

Coupling with MoorDyn

VALIDATION: EXPERIMENTS IN GHENT UNIVERSITY

Floating moored BOX Regular waves; H=0.12 m, T=1.6s, d=0.5m

Time: 0.00 s

Crespo et al., 2018

Coupling with MoorDyn

VALIDATION: EXPERIMENTS IN GHENT UNIVERSITY

DualSPHysics		
BOX Dimensions	20 x 20 x 13.2 cm ³	
BOX Weight	3 kg + 0.6 kg(extra)	
BOX Centre of gravity	(0, 0, -1.26) cm	
BOX Lip draught	7.86 cm	

MoorDyn		
MOORING Diameter	3.656 mm	
MOORING Weight	0.607 g/cm	
MOORING Length	145.5 cm	
Water depth	50 cm	

Crespo et al., 2018

Coupling with MoorDyn

VALIDATION: EXPERIMENTS IN GHENT UNIVERSITY

Coupling with MoorDyn

VALIDATION: EXPERIMENTS IN GHENT UNIVERSITY

Project Chrono is an open-source multi-physics simulation engine

- Wide set of joints: spherical, revolute joint, prismatic, glyph, etc.
- Unilateral constraints
- Exact Coulomb friction model, for precise stick-slip of bodies
- Springs and dampers, even with non-linear features

http://projectchrono.org

VALIDATION: Chandra and Asai, 2016

Comparison between numerical and experimental rotation angle of **spring pendulum** in air and water and **gravity pendulum** in air and water

OUTLINE

Objective: Numerical modelling of WECs

SPH modelling: DualSPHysics software

- Wave generation, propagation and absorption
- Wave-structure interaction
- Coupling with MoorDyn
- Coupling with Project Chrono

Application to different WECs

- Oscillating Water Column (OWC)
- Oscillating Wave Surge Converter (OWSC)
- Point absorber
- Others (WaveStar, M4)

Conclusions & Future work

Oscillating Water Column (OWC)

OFFSHORE FLOATING MOORED OWC

EsflOWC

Efficiency and survivability of floating Oscillating Water Column Wave Energy Converters moored to the seabed

GHENT UNIVERSITY (COORDINATOR), BELGIUM

UNIVERSIDADE DE VIGO, SPAIN IST - UNIVERSIDADE DE LISBOA, PORTUGAL THE UNIVERSITY OF MANCHESTER, UNITED KINGDOM UNIVERSITÀ DEGLI STUDI FIRENZE, ITALY

A MARINET2 TRANSNATIONAL ACCESS PROJECT (EU H2020 PROGRAMME UNDER GRANT AGREEMENT NO 731094) SUPPORTED ALSO BY THE RESEARCH FOUNDATION FLANDERS (FWO), BELGIUM - FWO.0PR.2.0 - FWO RESEARCH PROJECT NO. 3G029114

> INFRASTRUCTURES: LABIMA-UNIFI, WAVE-CURRENT FLUME (WCF) AND COASTAL ENGINEERING RESEARCH GROUP OF GHENT UNIVERSITY, LARGE WAVE FLUME

Oscillating Water Column (OWC)

Floating and moored OWC EXPERIMENT IN GENT UNIVERSITY: FLOATING MOORED OWC

Oscillating Water Column (OWC)

Floating and moored OWC

OWC with different materials but total MASS is 2.593 kg SPH particles of density 578 kg/m³

Oscillating Water Column (OWC)

Floating and moored OWC

DualSPHysics		
OWC Dimensions	$20 \text{ x } 20 \text{ x } 44 \text{ cm}^3$	
OWC Weight	2.593 kg	
OWC Centre of gravity	(-0.91, 0, -10.8) cm	

MoorDyn		
MOORING Diameter	3.656 mm	
MOORING Weight	0.607 g/cm	
MOORING Length	145.5 cm	
Water depth	50 cm	

Oscillating Water Column (OWC)

Floating and moored OWC

Oscillating Water Column (OWC)

Floating and moored OWC

Oscillating Water Column (OWC)

Floating and moored OWC

RELATIVE MOTION BETWEEN HEAVE AND WATER ELEVATION INSIDE OWC heave - η_{OWC}

Oscillating Wave Surge Converter (OWSC)

Brito et al., 2019

Experimental set up at the Marine Research Group's hydraulics laboratory at Queen's University Belfast.

Oscillating Wave Surge Converter (OWSC)

(a)

Regular waves: d=0.825, T=2s, H=0.15m d=0.825, T=2s, H=0.25m d=0.825, T=3s, H=0.20m

Brito et al., 2019

Brito et al., 2019

Oscillating Wave Surge Converter (OWSC)

u (m/s) -0.50 -0.25 0 0.25 0.50

Oscillating Wave Surge Converter (OWSC)

Brito et al., 2019

VALIDATION:

Numerical and experimental time series of angular velocity of the flap

Oscillating Wave Surge Converter (OWSC)

CWR: capture width ratio Influence of the PTO system $F_f^{smooth}(t) = \sigma_0 z_d(t) + \sigma_1 \dot{z}_d(t) +$ $\sigma_2 \dot{x}(t)$ **Viscous friction coefficient** 0.45 H = 0.15 m; T = 2 s H = 0.25 m; T = 2 s0.3 CWR (-) 0.15 0 1000 200 400 600 800 1200 0 $\sigma_2 (N \text{ s m}^{-1})$ $F_p^{smooth}(t) = \left[K_p \dot{x}(t)^2 + I_p \ddot{x}(t) \right] A$ **Pressure loss coefficient** 0.25 0.2 CWR (-) 0.15 0.1 12 0 3 6 9 15 18 K_p (Pa s²) $\times 10^{5}$

Brito et al., 2019

Brito et al., 2019

Oscillating Wave Surge Converter (OWSC)

Influence of the PTO system

Brito et al., 2019

Oscillating Wave Surge Converter (OWSC)

Influence of flap inertia

CWR: capture width ratio

Zang Z, Zhang Q, Qi Y, Fu X, 2018. Hydrodynamic responses and efficiency analyses of a heaving-buoy wave energy converter with PTO damping in regular and irregular waves. Renewable Energy, 116: 527-542

PTO is modelled as a linear damper

 $F_{PTO} = \mathbf{c} \cdot vel.z$

Buoy: cylinder with only-heave motion:

Diameter D=0.5 m Mass M=21.6 kg Draft B=0.11 m

Regular waves:

H=0.16 m, T=1.5 s, d=1.1 m

Linear damper with CHRONO: rest_length=0.99 m, k(stiffness)=0

Regular waves: H=0.16 m, T=1.5 s, d=1.1 m Spring-damper with CHRONO: rest_length=0.99 m, k=0

VALIDATION

Regular waves: H=0.16 m, T=1.5 s, d=1.1 m Spring-damper with CHRONO: rest_length=0.99 m, k=0

c=0

WaveStar

Revolute and spherical joints on the articulated arms and buoys.

Canelas et al., 2018

WaveStar

Revolute and spherical joints on the articulated arms and buoys.

Canelas et al., 2018

WaveStar

Forces on the buoy link

Multi-floater M4

M4 is a moored three-float line absorber WEC

Stansby P, Carpintero-Moreno E, Stallard T, 2017. Large capacity multi-float configurations for the wave energyconverter M4 using a time-domain linear diffraction model. Applied Ocean Research, 68: 53-64.

Interaction waves-structure Mechanical constraint "hinge" Pneumatic actuator or damper Mooring line SPH CHRONO CHRONO MOORDYN

Multi-floater M4

M4 is patented and has been supported by:

- EPSRC Supergen Marine Challenge grant Step WEC (EP/K012487/1) provided by the UK government
- The Energy Sustainability Conacyt-SENER fund provided by the Mexican government
- The EU Marinet2 Transnational Access programme (project M4WW)

OUTLINE

Objective: Numerical modelling of WECs

SPH modelling: DualSPHysics software

- Wave generation, propagation and absorption
- Wave-structure interaction
- Coupling with MoorDyn
- Coupling with Project Chrono

Application to different WECs

- Oscillating Water Column (OWC)
- Oscillating Wave Surge Converter (OWSC)
- Point absorber
- Others (WaveStar, M4)

Conclusions & Future work

Conclusions & Future work

- ✓ DualSPHysics code has been validated with experimental data to prove the capability to simulate wave-structure interactions (fixed and floating structures).
- ✓ DualSPHysics is **successfully coupled with the other models**:
 - \checkmark MoorDyn to simulate mooring lines
 - ✓ Project Chrono to simulate the behaviour of PTO
- ✓ It can be used to study not only the efficiency of WECs but also the survivability under extreme waves (high energetic sea states).
- ✓ Source code and examples are **available in DualSPHysics v4.4**

Conclusions & Future work

SOURCE CODE AND EXAMPLE IN DUALSPHYSICS V4.4

https://dual.sphysics.org/
REFERENCES

- Crespo AJC, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, García-Feal O. 2015. DualSPHysics: open-source parallel CFD solver on Smoothed Particle Hydrodynamics (SPH). Computer Physics Communications, 187: 204-216.
- Altomare C, Domínguez JM, Crespo AJC, González-Cao J, Suzuki T, Gómez-Gesteira M, Troch P. 2017. Long-crested wave generation and absorption for SPH-based DualSPHysics model. Coastal Engineering, 127: 37-54.
- Crespo AJC, Altomare C, Domínguez JM, González-Cao J, Gómez-Gesteira M. 2017. Towards simulating floating offshore Oscillating Water Column converters with Smoothed Particle Hydrodynamics. Coastal Engineering, 126: 11-16.
- Zhang F, Crespo AJC, Altomare C, Domínguez JM, Marzeddu A, Shang S, Gómez-Gesteira M. 2018. DualSPHysics: a numerical tool to simulate real breakwaters. Journal of Hydrodynamics, 30(1): 99-105.
- Canelas RBC, Crespo AJC, Brito M, Domínguez JM, García-Feal O. 2018. Extending DualSPHysics with a Differential Variational Inequality: modeling fluid-mechanism interaction. Applied Ocean Research, 76: 88-97.
- Crespo AJC, Hall M, Domínguez JM, Altomare C, Wu M, Verbrugghe T, Stratigaki V, Troch P, Gómez-Gesteira M. 2018. Floating moored oscillating water column with meshless SPH method. In: 37th International Conference on Ocean, Offshore and Artic Engineering, Madrid, Spain, OMAE2018-77313
- Brito M, Canelas RB, García-Feal O, Domínguez JM, Crespo AJC, Ferreira RML, Neves MG, Teixeira L. 2019. A numerical tool for modelling oscillating wave surge converter with nonlinear mechanical constraints. Renewable Energy, 146: 2024-2043.

ACKNOWLEDGEMENTS

COST Action CA17105, COST Association WECANet: A pan-European Network for Marine Renewable Energy

SPANISH GOVERNMENT. RETOS 2016

WELCOME: Numerical design of floating Wave Energy COnverter MEchanisms: efficiency and survivability

MARINET2 EsflOWC: Efficiency and survivability of floating OWC moored to the seabed

Thanks a lot for your attention

Grazie per la vostra attenzione

MORE...

SPHERIC organisation

<image>

ERCOFTAC SPECIAL INTEREST GROUP FOR SPH

Welcome to SPHERIC

SPHERIC is the international organisation representing the community of researchers and industrial users of Smoothed Particle Hydrodynamics (SPH).

As a purely Lagrangian technique, SPH enables the simulation of highly distorting fluids and solids. Fields including free-surface flows, solid mechanics, multi-phase, fluid-structure interaction and astrophysics where Eulerian methods can be difficult to apply represent ideal applications of this meshless method.

Annual Workshops

http://spheric-sph.org/

MORE...

SPHERIC organisation

SPHERIC is the international organisation representing the community of researchers and industrial users of Smoothed Particle Hydrodynamics (SPH) **UNIVERSIDADE DE VIGO is member of SPHERIC since 2006**

Objectives of SPHERIC

To develop the fundamental basis of SPH. To discuss current and new concepts. To foster communication between industry and academia. To communicate experience in the application of the technology. To investigate accelerating simulations and visualisation. To provide access to existing software and methods. To define benchmark test cases. To identify future needs of SPH.

SPHERIC STEERING COMMITTEE:

Prof. Moncho Gómez Gesteira (2006-2013) Dr Alejandro J. C. Crespo (2014-TODAY) WEBMASTER

http://spheric-sph.org/

MORE...

DualSPHysics Users Workshop

1st DualSPHysics Users Workshop, University of Manchester, U.K., 8-9 September 2015 2nd DualSPHysics Users Workshop, University of Manchester, U.K., 6-7 December 2016 3rd DualSPHysics Users Workshop, University of Parma, Italy, 13-15 November 2017 4th DualSPHysics Users Workshop, Instituto Superior Técnico, Lisboa, 22-24 October 2018

5th DualSPHysics Users Workshop, Universitat Politècnica de Catalunya, Barcelona, 2020

